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Abstract – Unexpected catastrophic transitions are often observed in complex systems. However,
the prediction of such transitions is difficult in practice. Here, we find a special kind of extreme
events with a dragon-king probability distribution that occur just prior to a catastrophic transition
and, hence, can serve as its precursor. To illustrate the application of dragon kings as a precursor,
we consider a practical experimental thermo-fluid system and a theoretical model of coupled
logistic maps with quasi-periodic forcing, both systems displaying a catastrophic transition.

editor’s  choice Copyright c© 2021 EPLA

Introduction. – Many natural, societal and engineer-
ing systems show extreme or rare events that lead to dis-
asters. These events include floods, cyclones, droughts,
pandemics, power outages, material ruptures, explosions,
chemical contamination, stock market crashes and trans-
missible diseases (e.g., AIDS, and influenza) [1–4]. The
probability of occurrence of such extreme events is low;
however, the losses incurred by their presence are enor-
mous. Furthermore, the prediction of the onset of such
events is still not mastered. Nevertheless, recent stud-
ies systematically explored the occurrence of such events
in dynamical systems [5–10]. Extreme events occur in
both linear and nonlinear dynamical systems [5–12]. Such
events are observed in many physical systems including
oceanic rogue waves [13], optical fibers [14], superfluid
helium [15], plasmas [16], lasers [17–20], neuronal mod-
els [21], etc.

The probability distribution of events in a system fol-
lows a power law, where the extreme events appear in the
tail of the distribution [1,22,23]. This power-law distribu-
tion suggests that the underlying mechanism of all events
remains the same across the whole spectrum. This means
both regular and extreme events belong to the same pop-
ulation (or the same distribution), reflecting the same un-
derlying mechanism. It has been commonly reported that
extreme events are unpredictable because we cannot an-
ticipate the final size (magnitude) of a future event [22,23].
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The identification of the origin of extreme events has been
a focus of many recent studies [21,24,25].

Sornette [22] examined whether the extreme events in
the distribution of events have the same mechanism as
the rest of the events (nonextreme events) or they have
a different mechanism. From many investigations [22,23],
Sornette found that a class of the extreme events deviate
from the power law and he termed them “dragon kings”.
He also showed that dragon kings appear as a result of
amplifying mechanisms that are not necessarily active for
the rest of the population in the distribution [22]. As
a result, the tail of the distribution shows a hump-like
behavior for dragon-king extreme events, whereas an ex-
treme event without dragon kings obey a power law. Since
dragon kings are rare, losses resulting from these events
are more harmful than other events. Dragon kings have
been reported in nonlinear electronic circuits [26], burst-
ing neurons [27], distribution of city sizes, distribution
of financial draw-downs, and distribution of earthquake
energies [22,23,28].

In this paper, we investigate the occurrence of dragon-
king extreme events in experiments performed on a ther-
moacoustic system a ducted laminar premixed flame
combustor. Such a system is prone to the occurrence of
thermoacoustic instabilities, caused by the positive feed-
back between the heat release rate fluctuations in the
flame and the acoustic field in the confinement, resulting
in large-amplitude acoustic oscillations [29]. These insta-
bilities manifest various dynamical behaviors such as limit
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cycle, period-2, quasi-periodicity, intermittency, chaos and
strange nonchaos [30–33]. The presence of thermoacoustic
instability in a combustion system can lead to structural
damage of the system components and overwhelm the
thermal protection systems; hence, their occurrence is un-
desirable [29]. Similar to thermoacoustic instability, flame
blowout is another catastrophic phenomenon observed in
such a system [34]. Prior to flame blowout, Kabiraj and
Sujith [34] found that the flame intermittently lifts off from
its anchoring surface due the acoustic perturbations. In
the lift-off state, the flame dynamics is significantly in-
fluenced by the underlying hydrodynamic fluctuations of
the unburnt reactants. When the timescales of these flow
fluctuations are much larger than the reaction timescales
in the system [35], the flame ceases to exist in the system
and is blown out. After flame blowout, the amplitude of
the pressure fluctuations reduces to a very small value.
Flame blowout can lead to unplanned shutdowns of power
plants, sudden loss of thrust in airplane engines, etc. [36].
We come across a mathematical model such as cou-

pled logistic maps with quasi-periodic forcing that closely
represent the dynamics of the thermoacoustic system
observed in experiments. Depending on the range
of operating parameters, this model shows a transi-
tion from a state of synchronized quasi-periodic motion
to nonsynchronized chaotic motion (intermittency) via
blowout bifurcation [37–39]. During blowout bifurcation,
the synchronized behavior loses its transverse stability and
attains desynchronized behavior [37,38]. The repelled tra-
jectory from the unstable synchronization manifold either
moves to a new stable attractor or moves to infinity [38].
If the trajectory reaches to a new attractor, then the sys-
tem displays desynchronized behavior. In contrast, if the
trajectory moves to infinity, then we call this state as at-
tractor blowout. We can associate this repulsive behav-
ior of a manifold to a catastrophic event. In the present
study, we investigate the dynamical behavior of extreme
events observed prior to such catastrophic transition in the
model of coupled logistic maps with quasi-periodic forcing.
Thus, in both the thermoacoustic system and the model
of coupled logistic maps with quasi-periodic forcing, flame
blowout and attractor blowout, respectively, can be con-
sidered as catastrophic transitions. There is potential sci-
entific importance in identifying the existence of such crit-
ical transitions and obtain early warning signals for their
onset.
In our analysis, we choose the parameter range of both

the systems such that their behavior shows regular oscilla-
tions (e.g., quasi-periodicity), intermittency, and extreme
events leading to a catastrophic transition. The dynamics
of extreme events exhibits the occurrence of both large-
and small-amplitude events in the system. The distri-
bution of such events follows a power law [26]. Further,
we observe that, just prior to the catastrophic transition,
extreme events display a special kind of distribution that
deviates from the power law, known as the dragon-king
distribution. Therefore, we propose for the first time that

Fig. 1: Schematic of the experimental facility of a thermoacous-
tic system. A: a single conical flame. B: an open-closed glass
duct. C: a burner tube. D: a decoupler. E: an LPG-air premix-
ing chamber. F: a traverse. P: a pressure sensor. The figure is
reproduced with permission from Kabiraj and Sujith [34].

the existence of such dragon-king extreme events can be a
precursor for catastrophic transitions. To the best of our
knowledge, no such early warning signal for catastrophic
transitions has been reported before. We confirm the
existence of dragon-king events using a probability distri-
bution function, a complementary cumulative distribution
function (CCDF), and finding p-values of a dragon-king
test (DK-test) [22,23].

Catastrophic transition in a thermoacoustic sys-
tem. – The experiments were performed on a ducted pre-
mixed laminar flame combustor (fig. 1). The details of
the setup and operating parameters can be found from
Kabiraj and Sujith [34]. Here, we briefly mention the rel-
evant information of the system and the data acquisition
required for our analysis. The combustor is made up of a
vertical glass duct closed at the bottom and open at the
top. A burner tube is used to supply a premixed mixture
of air and fuel (liquefied petroleum gas (LPG)) required for
combustion. A single conical flame was stabilized at the
tip of the burner tube. During experiments, the location
of the flame with respect to the open end of the glass duct
was varied as the control parameter and is denoted as xf .
Towards this purpose, the duct is moved vertically with
respect to the burner tube using a traverse arrangement,
while the absolute position of the burner tube is held fixed
throughout the experiments. The acoustic pressure fluctu-
ations in the system, corresponding to each flame location,
were measured using a piezoelectric pressure transducer
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Fig. 2: One-parameter bifurcation diagram shows the varia-
tion of the local maxima Pn of the absolute values of acoustic
pressure fluctuations (|P |) as a function of the flame location
(xf ), obtained from experiments performed on a thermoacous-
tic system. A red line connecting open circles shows a limit-
ing value of the critical threshold calculated from eq. (1) for
identifying extreme events. Region I corresponds to regular os-
cillations (i.e., limit cycle and quasi-periodicity) and region II
indicates bursting oscillations (i.e., intermittency and extreme
events). ((b), (c)) Time series and ((d), (e)) the reconstructed
phase portraits of quasi-periodicity (xf = 61 cm, embedding
dimension d = 7 and time delay τ = 1.5ms) and intermittency
(xf = 68 cm, d = 7 and τ = 1.9ms), respectively.

(PCB piezotronics, Model Number 103B02, uncertainty
0.14Pa). The data were acquired for 30 s at a sampling
frequency of 10 kHz.

Kabiraj and Sujith [34] showed that, as the flame lo-
cation was varied in this system, the dynamic behavior
changes from the state of fixed point, limit cycle, quasi-
periodicity, and intermittency to flame blowout. In the
present investigation, we aim to provide a precursor for
a catastrophic transition, i.e., flame blowout, observed in
this system.

We first present the dynamical transitions observed in
the thermoacoustic system as a one-parameter bifurca-
tion diagram in fig. 2(a). The bifurcation diagram is
drawn in the form of the distribution of all local max-
ima (Pn) observed in the time series of the absolute
value of pressure (|P |) as a function of the flame location
(xf ). Since each local maxima Pn represents the abso-
lute amplitude of a signal, we refer to Pn as an event.
In region I (53.5 cm ≤ xf < 64 cm) of fig. 2(a), we
observe the states of low-amplitude limit cycle oscillations

(53.5 cm < xf < 61 cm) and quasi-periodic oscillations
(61.5 cm < xf < 64 cm). During these regular dynamical
states, the deviation of the pressure amplitudes from their
mean value is less. In region II of fig. 2(a) (64 cm ≤ xf <
70 cm), we observe the scatter of local amplitudes in the
signal over a larger range due to the state of intermittency.

To delineate quasi-periodicity (xf = 61 cm) and inter-
mittency (xf = 68 cm) behaviors, we plot their time se-
ries in figs. 2(b), (c). The corresponding phase portraits
are reconstructed via delay coordinate embedding [40] and
are shown in figs. 2(d), (e), respectively. The phase space
trajectory of a quasi-periodic signal exhibits a bounded
motion around a torus attractor (fig. 2(d)). During in-
termittency (fig. 2(c)), the pressure oscillations alter-
nately switch between epochs of low-amplitude periodic
oscillations and bursts of large-amplitude chaotic oscilla-
tions [34]. The phase space corresponding to this state
shows a disk-like attractor (fig. 2(e)), where the trajec-
tory spirals towards the outer core during the occurrence
of burst and gets re-injected back to the center core at the
end of it. Kabiraj and Sujith [34,41] characterized this
state of intermittency as type-II intermittency using the
return map and recurrence plot analysis. Furthermore, at
flame locations beyond xf > 70 cm, the system experi-
ences a catastrophic transition, i.e., flame blowout.

In region II, at a few flame locations, we observe the
state of extreme events in the acoustic pressure oscilla-
tions. To identify such extreme events, we consider a
critical amplitude threshold (PEE

n ) that can be calculated
using the following equation [42]:

PEE
n = 〈Pn〉+NσPn

, (1)

where the mean and standard deviation of all Pn in the
signal are denoted by 〈Pn〉 and σPn

, respectively. For an
event to be considered an extreme event, it must satisfy
the condition PEE

n < Pn [42]. The multiplication factor
N can be considered as N ≥ 4 [43–45] for finding the
critical threshold. The value of N is selected from sev-
eral trials. A low value of N can cause the occurrence of
many events inside the threshold, while a high value of N
can lead to the identification of a few events in the sig-
nal. As mentioned before, since the occurrence of extreme
events is rare, we need to choose an optimum value of N
to have only a few events that cross the threshold in a
signal. Based on eq. (1), we identify extreme events in the
experimental data by fixing N = 8 (see figs. 3(a), (b)). We
indicate this critical threshold at each xf by a line connect-
ing red circles over the one-parameter bifurcation diagram
in fig. 2(a). For a given xf , if an event in |P | crosses the
threshold line, we consider the corresponding event to be
an extreme event. In regime II of intermittency, we notice
that at a few values of xf , such as xf = 64.5, 66.5, 69, and
69.5 cm, the pressure amplitude (Pn) crosses the critical
amplitude threshold (PEE

n ). Therefore, we consider such
events as extreme events in our analysis.
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Fig. 3: (a), (b): absolute values of pressure fluctuations cor-
responding to two distinct extreme events for xf = 69 cm and
xf = 69.5 cm, respectively. (c), (d): the corresponding prob-
ability distribution functions (PDFs) of Pn on a log-log scale.
In the calculation of PDF, we use the entire recorded pressure
signal. A red dashed line in (a)–(d) shows the threshold value
corresponding to 〈Pn〉+8σPn . The straight line fits (solid line)
for the linear regime of the PDFs and the corresponding slopes
are shown in (c) and (d).

In figs. 3(a) and (c), we show time series (in terms of
the absolute value of pressure amplitude, |P |) correspond-
ing to the states of extreme events observed at two flame
locations (xf = 69 cm and xf = 69.5 cm, respectively) in
the system. The probability distribution function (PDF)
of the local maxima in the signals corresponding to these
states are illustrated in figs. 3(c) and (d). A red dashed
line in figs. 3(a) to (d) represents the critical threshold
based on eq. (1) used for defining extreme events in the
system. Interestingly, we notice that these two extreme
events have different PDFs. The extreme events shown in
fig. 3(c) have a distribution that, in turn, indicates that all
the events in the signal can be well fitted with a power law.
However, the PDF shown in fig. 3(d) exhibits a distinct
hump-like long-tail distribution (dragon-king–like distri-
bution), where we observe that a few events at the tail
deviate from the power-law distribution of the rest of the
events. This kind of distribution is known as a dragon
king [22,23]. Interestingly, we notice that the dragon-king
extreme events appear only just prior to flame blowout.
Hence, we propose that the identification of dragon-king
extreme events in the pressure signal can serve as a pre-
cursor for a catastrophic transition, such as flame blowout,
in thermoacoustic systems.

Further, to understand the characteristics of dragon-
king extreme events, we show the reconstructed phase
portrait and the Poincaré return map of the acoustic pres-
sure signal (shown in fig. 3(b)) in figs. 4(a) and (b), re-
spectively. In fig. 4(a), we notice that the trajectory
stays within the inner core region corresponding to the
low-amplitude cluttered behavior for most of the time in-
terval. Then, the trajectory is pushed away from the inner
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Fig. 4: (a) The reconstructed phase portrait (using embedding
dimension d = 7 and time delay τ = 1.9ms); (b) Poincaré
return map; (c) complementary cumulative distribution func-
tion (CCDF); and (d) the variation of p-values of the DK
test as a function of the maximal rank r corresponding to the
pressure signal observed during dragon-king extreme events at
xf = 69.5 cm.

core region during the onset of large-amplitude events [34].
Since the system has a single attractor in the inner core,
the trajectory returns to it after a few revolutions, at the
end of the large-amplitude events. Furthermore, we show
the Poincaré return map in fig. 4(b), obtained by plotting
the first local maxima (Pn) against the next local max-
ima (Pn+1). We notice that some events cross the critical
threshold (represented by a dashed line in fig. 4(b)), which
confirms the existence of extreme events.

Next, we confirm the presence of dragon-king extreme
events using the measure of complementary cumulative
distribution function (CCDF), (1 − f(x)) [23], where x
is the given signal. The mathematical details of CCDF
are provided in sect. II of the Supplementary Mate-
rial Supplementarymaterial.pdf (SM). In fig. 4(c), black
points indicate the CCDF obtained from the pressure sig-
nal and the solid black line denotes the corresponding
power-law fit. We observe that in the tail of the CCDF,
there are events outside the power-law fit. These events
are outliers from the power-law distributions, which in-
dicate the nature of dragon kings [23]. However, in the
case of quasi-periodic oscillations (fig. 2(b)) and extreme
events (fig. 3(a)), we do not observe such outliers (see
figs. 1(a), (c) in sect. II of the SM).

Further, to corroborate the existence of dragon kings,
we find the p-value of DK test [23]. The p-value of the DK
test helps us to identify whether the null hypothesis is true
or false. If the null hypothesis is true, then the given data
set has no DK extreme events or vice versa. A smaller
p-value indicates that some of the events in the given data
set have a different distribution than the power-law distri-
bution; thus, the null hypothesis fails. In contrast, a larger
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p-value indicates that the null hypothesis is satisfied. The
p-values are obtained using the following relation:

p = 1− F (Ts, 2r, 2(n− r)), (2)

where Ts, r and n are the test statistic, rank of the events,
and number of the events, respectively. F (Ts, 2r, 2(n −
r)) is the cumulative distribution function of the f -dis-
tribution with (2r, 2(n−r)) degrees of freedom. The math-
ematical details for obtaining the p-value from DK test are
provided in sect. I of the SM. A lower p-value obtained
from the DK test signifies that the null hypothesis of the
generation of all events in a signal by the same distribu-
tion (i.e., having the power-law distribution) is not valid.
In the literature of extreme events [22,23], if the p-value
is less than 0.1, the existence of dragon kings in a sig-
nal is confirmed. In fig. 4(d), we found that p-values for
the pressure signal corresponding to xf = 69.5 cm are less
than 0.1. Therefore, using the DK test we confirm the
presence of dragon-king extreme events prior to the catas-
trophic transition observed in the thermoacoustic system.

Catastrophic transition in a coupled logistic
maps with quasi-periodic forcing. – As we discussed
in the introduction, catastrophic transitions appear in
other nonlinear dynamical systems as well. In order to
show the generality of the existence of dragon kings before
catastrophic transitions, we consider a system of coupled
logistic maps with quasi-periodic forcing that exhibits a
catastrophic transition [38],

xn+1 = αxn(1− xn) + β(yn − xn) + η cos(2πθn),

yn+1 = αyn(1− yn) + β(xn − yn) + η cos(2πθn),

θn+1 = θn + ω, (3)

where x, y, θ are the system variables, α and β are the
strengths of nonlinearity and the strength of coupling, re-
spectively. η and ω are the amplitude and the frequency
of the external driving force, respectively.

The model in eq. (3) exhibits the transition from the
state of quasi-periodicity to intermittency and then to
attractor blowout (as shown in fig. 6). Here, attractor
blowout is a catastrophic transition wherein the attractor
disappears (i.e., moves to infinity) due to a change in the
control parameter. In fig. 5(a), we plot the absolute values
of synchronization error, i.e., |xn−yn|, as a function of the
parameter α for a fixed value of parameters, β = 0.156,
ω = (

√
5−1)/2 and η = 0.01. Here, the black dotted

points correspond to |xn − yn| and a red line connected
by open red circles denotes the boundary of the critical
threshold obtained for N = 6 [43,44].

For lower values of α in fig. 5(a), we observe synchro-
nization of the variables x and y, causing the synchroniza-
tion error to remain near zero. However, for higher values
of α, we notice large fluctuations in the synchronization
error, which happen due to the desynchronization of x and
y variables.
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-0.15

-0.08

0.0

0.15

3.51 3.52 3.53 3.54 3.551
0

0.6

1.2

Fig. 5: One parameter bifurcation diagram for a system of
coupled logistic maps with quasi-periodic forcing, showing the
variation of (a) synchronization error and (b) transverse Lya-
punov exponent as a function of α. We fix the other system
parameters as β = 0.156, ω = (

√
5−1)/2 and η = 0.01.

Further, we calculate the transverse Lyapunov expo-
nent (TLE) to identify the transition from synchronized to
desynchronized states. The expression for the transverse
Lyapunov exponent for eq. (3) can be obtained as [38]

λ⊥ = lim
N→∞

1

N

N∑

n=1

ln |f ′
α(xn)− 2β|. (4)

The function corresponding to variable x is defined
as fα(x) = αx(1 − x) and its derivative is denoted by
f ′
α. We choose the system parameter as β = 0.156.
The definition of TLE is elaborated in sect. III of
the SM. The synchronized regime is confirmed through
the negative values of the TLE (λ⊥) [38], as seen in
fig. 5(b). However, for increasing the α value, we no-
tice that the synchronized attractor loses its transverse
stability, leading to desynchronized behavior through
blowout bifurcation (occurs when λ⊥ crosses zero). When
the TLE becomes positive, the synchronized invariant
manifold turns out to be a repeller. Hence, the trajec-
tory is repelled from the synchronization manifold and it
moves to another attractor in the phase space and shows
the behavior of on-off intermittency [38]. Such intermit-
tency dynamics exists for a range of system parameters
α ∈ (3.54, 3.552).
Furthermore, we notice some states of intermittency

that satisfy the criteria for extreme events as given in
eq. (1). Extreme events can be identified from a few in-
termittency events that cross the boundary of the criti-
cal threshold (fig. 5(a)). Such a behavior of the presence
of extreme events in the region of intermittency shows a
qualitative match with that observed in the thermoacous-
tic system (fig. 2(a)). Upon increasing α, the attractor
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Fig. 6: A two-parameter bifurcation diagram between α and
β for a system of coupled logistic maps with quasi-periodic
forcing. NEE (in red) and EE (in black) denote the regions of
nonextreme events and extreme events, respectively. DK (in
grey) and BO (in yellow) indicate the regions of dragon-king
extreme event and attractor blowout, respectively.

diverges to infinity. This means that the repelled attractor
from the unstable synchronization manifold does not reach
any attractor state in the phase space. We characterize
this transition to a state with the absence of attractors as
a catastrophic transition.

Next, we illustrate the dynamical transition of this
model in a two-dimensional parameter space between α
and β. We separate the dynamical regimes in fig. 6 col-
lectively using different measures, i.e., the transverse Lya-
punov exponent, the extreme event criterion, and the DK
test. We identify four different dynamical regimes in the
model, including i) no extreme events (NEE, marked in
red containing quasi-periodic and intermittency dynamics
with no extreme events); ii) extreme events (EE, marked
in black containing intermittency and extreme events);
iii) dragon-king extreme events (DK, marked in gray con-
taining extreme events with dragon-king distribution);
and iv) attractor blowout regime (marked in yellow). In
fig. 6, we notice the presence of a regime of dragon-king
extreme events prior to attractor blowout. Therefore, we
suggest that the dragon kings can be a precursor for the
catastrophic transition in the model as well. Next, we con-
firm the existence of dragon-king extreme events through
a statistical analysis.

In figs. 7(a) and (b), we show the time variation of |xn−
yn| and the corresponding PDF, respectively, for the state
of dragon-king extreme event. We notice the existence
of hump-like behavior at the tail of the distribution in
fig. 7(b). This long-tail distribution with a hump confirms
the existence of dragon kings in the system [22,23].

Further, to confirm the presence of dragon-king events,
we also plot complementary cumulative distribution func-
tion (CCDF) in fig. 7(c) corresponding to the time series
shown in fig. 7(a). We notice that the tail of the CCDF
(shown as a dotted black line) deviates from the rest of the
power-law distribution (indicated by a black solid line).
Further, the CCDF corresponding to the quasi-periodic

0.0 2250 4500
0.0

0.6

1.2

-5 -2.5 0
-4

0

4

0.5 0.65 1.2
0.3

0.65

1

6 15 24
-0.1

0.1

0.5

1

Fig. 7: (a) Time evolution and (b) probability distribution
function (in log-log scale) of dragon-king extreme events in
a model; (c) complementary cumulative distribution function;
and (d) the variation of p-value of the DK-test as a function of
the maximal rank r of the signal corresponding to the dragon-
king extreme events. We fix the other system parameters as
α = 3.55, β = 0.156, ω = (

√
5−1)/2 and η = 0.01.

attractor and extreme events follows a power-law distri-
bution (refer to figs. 1(b), (d) in sect. II of the SM). Fur-
thermore, we plot the variation of p-values as a function
of the maximal rank r in fig. 7(d). We notice that initially
p-value has a value greater than 0.1 and less than 0.9.
However, after a certain range of maximal rank, it takes
a value less than 0.1, confirming the existence of dragon
kings in the coupled logistic maps with quasi-periodic forc-
ing, before the onset of attractor blowout [22,23].

Conclusion. – To summarize, we found the existence
of dragon-king extreme events prior to a catastrophic tran-
sition in the experimental study performed on a thermoa-
coustic system and in a model of coupled logistic maps
with quasi-periodic forcing. The existence of dragon kings
is confirmed using several measures, such as probability
distribution function, complementary cumulative distribu-
tion function, and the DK test. We propose that the pres-
ence of dragon kings can serve as an early warning signal
to catastrophic transitions observed in these systems. We
believe that the present study opens a new direction for
understanding the mechanism of catastrophic transitions
in nonlinear dynamical systems.
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